A Supervised Semantic Parsing with Lexicon Extension and Syntactic Constraint
نویسندگان
چکیده
Existing semantic parsing research has steadily improved accuracy on a few domains and their corresponding meaning representations. In this paper, we present a novel supervised semantic parsing algorithm, which includes the lexicon extension and the syntactic supervision. This algorithm adopts a large-scale knowledge base from the open-domain Freebase to construct efficient, rich Combinatory Categorial Grammar (CCG) lexicon in order to supplement the inadequacy of its manually-annotated training dataset in the small closed-domain while allows for the syntactic supervision from the dependency-parsed sentences to penalize the ungrammatical semantic parses. Evaluations on both benchmark closed-domain datasets demonstrate that this approach learns highly accurate parser, whose parsing performance benefits greatly from the open-domain CCG lexicon and syntactic constraint.
منابع مشابه
برچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملMorpho-syntactic Lexicon Generation Using Graph-based Semi-supervised Learning
Morpho-syntactic lexicons provide information about the morphological and syntactic roles of words in a language. Such lexicons are not available for all languages and even when available, their coverage can be limited. We present a graph-based semi-supervised learning method that uses the morphological, syntactic and semantic relations between words to automatically construct wide coverage lex...
متن کاملLarge-scale Semantic Parsing via Schema Matching and Lexicon Extension
Supervised training procedures for semantic parsers produce high-quality semantic parsers, but they have difficulty scaling to large databases because of the sheer number of logical constants for which they must see labeled training data. We present a technique for developing semantic parsers for large databases based on a reduction to standard supervised training algorithms, schema matching, a...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملFeature extraction in opinion mining through Persian reviews
Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...
متن کامل